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Introduction

• Much mathematical modeling of gene networks is done at 
the macroscopic level.

– Thermodynamic Limit.

– Deterministic Models.

• Some key chemical species are very rare.

– genes, proteins, RNA molecules, etc.

– Take on discrete values.

• Noise dominates the cellular environment.
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genegene genegene…

Stochastic Switching:
Identical genotype, identical environments, yet 

different phenotypes.
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• At any time the system is in one of a countable number of 
configurations.

• Reactions are transitions from one configuration to another.
• These reactions occur with exponentially distributed waiting times.

• The      occurs in the next infinitesimal time step, with 
probability              .

A Markov description of               
chemical kinetics

X
T = [x1, x2, x3, . . .]

aµ(xi)dt

µ
th
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The Chemical Master Equation

s1

s2The probability that the system is in configuration x at t+dt is 
equal to the probability that the system is at x at t, and no 
reaction occurs between t and t+dt plus the probability that the 
system is one reaction removed from x at t and that reaction 
occurs between t and t+dt.
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ṗ(x, t) = −p(x, t)
M∑

µ=1

aµ(x) +
M∑

µ=1

p(x − νµ, t)aµ(x − νµ)

The Chemical Master Equation

The CME (McQuarrie ‘67):
s1

s2The probability that the system is in configuration x at t+dt is 
equal to the probability that the system is at x at t, and no 
reaction occurs between t and t+dt plus the probability that the 
system is one reaction removed from x at t and that reaction 
occurs between t and t+dt.
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ṗ(x, t) = −p(x, t)
M∑

µ=1

aµ(x) +
M∑

µ=1

p(x − νµ, t)aµ(x − νµ)

The Chemical Master Equation

Define the probability density state 

vector (pdv):                                                   .

The CME (McQuarrie ‘67):
s1

s2The probability that the system is in configuration x at t+dt is 
equal to the probability that the system is at x at t, and no 
reaction occurs between t and t+dt plus the probability that the 
system is one reaction removed from x at t and that reaction 
occurs between t and t+dt.

P(X, t) := [p(x1, t), p(x2, t), p(x3, t), . . .]
T
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          evolves according to the Linear Time Invariant ODE:
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                             .Ṗ(X, t) = A · P(X, t)
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p(x − νµ, t)aµ(x − νµ)

The Chemical Master Equation

Define the probability density state 

vector (pdv):                                                   .

The CME (McQuarrie ‘67):

The matrix CME

s1

s2The probability that the system is in configuration x at t+dt is 
equal to the probability that the system is at x at t, and no 
reaction occurs between t and t+dt plus the probability that the 
system is one reaction removed from x at t and that reaction 
occurs between t and t+dt.

P(X, t) := [p(x1, t), p(x2, t), p(x3, t), . . .]
T

P(X, t)
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• Kinetic Monte Carlo algorithms.
– SSA,     leaping, System Partitioning Methods.

Solving the CME

7

τ



Munsky 2006

• Kinetic Monte Carlo algorithms.
– SSA,     leaping, System Partitioning Methods.
– May require many realizations (104 to 106) before one 

can achieve sufficient confidence in the solution of the 
CME.

Solving the CME

7

τ



Munsky 2006

• Kinetic Monte Carlo algorithms.
– SSA,     leaping, System Partitioning Methods.
– May require many realizations (104 to 106) before one 

can achieve sufficient confidence in the solution of the 
CME.

• Matrix Exponential Solution
P(X, t) = exp(At)P(X, 0)
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• Kinetic Monte Carlo algorithms.
– SSA,     leaping, System Partitioning Methods.
– May require many realizations (104 to 106) before one 

can achieve sufficient confidence in the solution of the 
CME.

• Matrix Exponential Solution

– What if the configuration space is infinite?

P(X, t) = exp(At)P(X, 0)

Solving the CME

7

τ
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Outline

1. Introduction
2. The Finite State Projection (FSP) solution of the 

Chemical Master Equation (CME)
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The FSP:
Finite Projection Bounds

J = [j1, j2, . . . , jN ] AJ ∈ R
N×NLet                           be an indexing vector, defining              

to be the principle submatrix of A.
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The FSP:
Finite Projection Bounds

J = [j1, j2, . . . , jN ] AJ ∈ R
N×N

Ṗ(X, t) := A · P(X, t)

1
T exp(AJ tf )P(XJ ; 0) ≥ 1 − ε

exp(AJ tf )P(XJ ; 0) ≤ P(XJ ; tf )
∣

∣

∣

∣

∣

∣

∣

∣

[

P(XJ , tf )
P(XJ′ , tf )

]

−

[

exp(Atf )P(XJ , 0)
0

]
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ ε.

Let                           be an indexing vector, defining              
to be the principle submatrix of A.

Theorem 1  [Munsky, Khammash JCP ‘06]: Consider any 
Markov Process in which the probability distribution evolves 
according to the ODE:

If for an indexing vector J:                                             

then                                             , and
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The Benefits of an FSP Solution

• The FSP is a linear ODE.

– Provides probability bounds on unlikely events.

– Open to linear systems based model reductions.

– Enables sensitivity and robustness analyses.
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Outline

1. Introduction

2. The Finite State Projection (FSP)

3. FSP Model Reduction
• Observability based minimal realizations.
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• Often one is not interested in the entire probability 
distribution. 

Reducing Unobservable 
Configurations

12
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• Often one is not interested in the entire probability 
distribution. 

• Instead one may wish only to estimate:

★ a statistical summary of the distribution, e.g.

✦ means, variances, or higher moments

★ probability of certain traits:

✦ switch rate, extinction, specific trajectories, etc…

• In each of these cases, one can define an output y(t):

y(t) = CP(t)

Reducing Unobservable 
Configurations

12

Ṗ(t) = AP(t)
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Given: Generic CME in the form of a linear ODE:

  The system begins in the set U at t=0 with pdv:

Aggregation and Model Reduction

13

Ṗ(X, t) = A · P(X, t)

P(XU , 0).
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Find:               for some set Y.  
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Ṗ(X, t) = A · P(X, t)

P(XU , 0).

P(XY , tf )



Munsky 2006

Given: Generic CME in the form of a linear ODE:

  The system begins in the set U at t=0 with pdv:

Find:               for some set Y.  

Define: 
  R = set of configurations reachable from U. 
  R’ = set of configurations unreachable from U.
  O = set of configurations from which Y may be reached.  
  O’ = set of configurations unobservable from Y.

Aggregation and Model Reduction

13

Ṗ(X, t) = A · P(X, t)

P(XU , 0).

P(XY , tf )
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Aggregation and Model Reduction

The full pdv evolves according to:
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The full pdv evolves according to:
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0 0
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Aggregation and Model Reduction

The full pdv evolves according to:

  The unreachable configurations cannot be excited by reachable ones (may be removed!)

0 0

0 0

  The unobservable configurations may not excite the observable ones
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Aggregation and Model Reduction

The full pdv evolves according to:

  The unreachable configurations cannot be excited by reachable ones (may be removed!)

0 0

0 0

  The unobservable configurations may not excite the observable ones

0 0
0
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  The Full system reduces to

Aggregation and Model Reduction

The full pdv evolves according to:

  The unreachable configurations cannot be excited by reachable ones (may be removed!)

0 0

0 0

  The unobservable configurations may not excite the observable ones

[

Ṗ(XRO, t)
Ṗ(XRO′, t)

]

=

[

ARO,RO 0

ARO′,RO ARO′,RO′

] [

P(XRO, t)
P(XRO′, t)

]

0 0
0
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∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(tf )
1T PY ′(tf )

]

− exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
1T PY ′(0)

]
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ ε.

Theorem 2: Consider any Markov Process in which the 
probability distribution evolves according to the ODE:

                                              

If for an indexing vector:

                                                                              

then                                                                         

                                                               

The Observability Aggregated FSP.

J ∈ Y,

1
T exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
1T PY ′(0)

]

≥ 1 − ε,

[

ṖY

ṖY ′

]

=

[

AY 0

AY ′Y AY ′

] [

PY

PY ′

]

.
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∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(tf )
1T PY ′(tf )

]

− exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
1T PY ′(0)

]
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ ε.

Theorem 2: Consider any Markov Process in which the 
probability distribution evolves according to the ODE:

                                              

If for an indexing vector:

                                                                              

then                                                                         

                                                               

The Observability Aggregated FSP.

We need only keep track of the unobservable states as a 
single aggregate.

J ∈ Y,

1
T exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
1T PY ′(0)

]

≥ 1 − ε,

[

ṖY

ṖY ′

]

=

[

AY 0

AY ′Y AY ′

] [

PY

PY ′

]

.
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Example: Genetic Toggle Model: 
Gardner, et al., Nature 403, 339-342 (2000)

Two repressors, u and v.

u(t)

v(t)
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Example: Genetic Toggle Model: 
Gardner, et al., Nature 403, 339-342 (2000)

Two repressors, u and v.

v inhibits the production of u.

u(t)

v(t)
a1(u, v) =

α1

1 + vβ ν1 =

[

1

0

]
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Example: Genetic Toggle Model: 
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Two repressors, u and v.

v inhibits the production of u.

u inhibits the production of v.

u(t)

v(t)
a1(u, v) =

α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]
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Example: Genetic Toggle Model: 
Gardner, et al., Nature 403, 339-342 (2000)

Two repressors, u and v.

v inhibits the production of u.

u inhibits the production of v.

Both u and v degrade exponentially.

u(t)

v(t)
a1(u, v) =

α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]

a2(u, v) = u

a4(u, v) = v

ν2 =

[

−1

0

]

ν4 =

[

0

−1

]
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Example: Genetic Toggle Model: 
Gardner, et al., Nature 403, 339-342 (2000)

Two repressors, u and v.

v inhibits the production of u.

u inhibits the production of v.

Both u and v degrade exponentially.

u(t)

v(t)
a1(u, v) =

α1

1 + vβ ν1 =

[

1

0

]

a3(u, v) =
α2

1 + uγ
ν3 =

[

0

1

]

a2(u, v) = u

a4(u, v) = v

ν2 =

[

−1

0

]

ν4 =

[

0

−1

]

α1 = 50

α2 = 16

β = 2.5

γ = 1
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We begin with an initial 
condition:

                           

and consider a sample 
trajectory.

A Sample Trajectory

Time (s)

v(t)

u(t)
[

u(t)
v(t)

]

=

[

60
0

]
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A Sample Trajectory
We begin with an initial 
condition:

                           

and consider a sample 
trajectory.

v(t)

u(t)

Time (s)

[

u(t)
v(t)

]

=

[

60
0

]
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A Sample Trajectory
We begin with an initial 
condition:

                           

and consider a sample 
trajectory.

Define the switch to be 
OFF when v(t) > 5 and    
u(t) < 20.

v(t)

u(t)

Time (s)

[

u(t)
v(t)

]

=

[

60
0

]
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A Sample Trajectory
We begin with an initial 
condition:

                           

and consider a sample 
trajectory.

Define the switch to be 
OFF when v(t) > 5 and    
u(t) < 20.

v(t)

u(t)

Time (s)

Find: The time at which 99% have turned OFF.

[

u(t)
v(t)

]

=

[

60
0

]
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For convenience, we define some 
configuration subsets. 

Partitioning the 
Configuration Space

u(t)

v(t)

ON

Neither ON nor OFF

u (t)

v(t)

ON

OFF Neither ON nor OFF

X
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For convenience, we define some 
configuration subsets. 

X = set of all configurations that 
have never been OFF.

Y’ = set of all configurations which 
have ever been OFF.

Relationships:

X is unreachable from Y’, and 
therefore Y’ is unobservable from X.
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Y’
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For convenience, we define some 
configuration subsets. 

X = set of all configurations that 
have never been OFF.

Y’ = set of all configurations which 
have ever been OFF.

Relationships:

X is unreachable from Y’, and 
therefore Y’ is unobservable from X.

We can therefore treat Y’ as a single 
aggregate.

Partitioning the 
Configuration Space
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Y’
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For convenience, we define some 
configuration subsets. 

X = set of all configurations that 
have never been OFF.

Y’ = set of all configurations which 
have ever been OFF.

Relationships:

X is unreachable from Y’, and 
therefore Y’ is unobservable from X.

We can therefore treat Y’ as a single 
aggregate.

Partitioning the 
Configuration Space

u(t)

v(t)

ON

Neither ON nor OFF

Y’

X
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Applying the FSP.

u(t)

v(t)

Y’

u (t)

v(t)

• From the simulation we saw that 
trajectories tend to remain in a 
small region of the configuration 
set: u(t)v(t)<260.

Neither ON nor OFF

ON

XJ′
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Applying the FSP.

u(t)

v(t)

Y’

u (t)

v(t)

• From the simulation we saw that 
trajectories tend to remain in a 
small region of the configuration 
set: u(t)v(t)<260.

• We will call this set      and its 
complement 

Neither ON nor OFF

ON

XJ′

XJ′

XJ
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XJ

Applying the FSP.

u(t)

v(t)

Y’

u (t)

v(t)

• From the simulation we saw that 
trajectories tend to remain in a 
small region of the configuration 
set: u(t)v(t)<260.

• We will call this set      and its 
complement 

Neither ON nor OFF

ONXJ

XJ′

XJ′

XJ
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Applying the FSP.
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• From the simulation we saw that 
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Applying the FSP.
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Applying the FSP.

Y’

u (t)

v(t)

• From the simulation we saw that 
trajectories tend to remain in a 
small region of the configuration 
set: u(t)v(t)<260.

• We will call this set      and its 
complement 

• We project       to a single point.
• No transitions can leave     .

XJ

XJ′

XJ

XJ′

XJ′

XJ′
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Applying the FSP.

Y’

u (t)

v(t)

• From the simulation we saw that 
trajectories tend to remain in a 
small region of the configuration 
set: u(t)v(t)<260.

• We will call this set      and its 
complement 

• We project       to a single point.
• No transitions can leave     .

We now have a small dimension, 
solvable system.

XJ

XJ′

XJ

XJ′

XJ′

XJ′
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Applying the FSP.

Define:
                                    : probability of having turned off. 
                                 

y′(t) = 1
T
P(Y ′, t)
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Applying the FSP.

Define:
                                    : probability of having turned off. 
                                 

From Theorem 2, if

y′(t) = 1
T
P(Y ′, t)

1
T exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
y′(0)

]

≥ 1 − ε,
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Applying the FSP.

Define:
                                    : probability of having turned off. 
                                 

From Theorem 2, if

then                                                                                         

y′(t) = 1
T
P(Y ′, t)

1
T exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
y′(0)

]

≥ 1 − ε,

∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(tf )
y′(tf )

]

− exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
y′(0)

]
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ ε
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Applying the FSP.

Define:
                                    : probability of having turned off. 
                                 

From Theorem 2, if

then                                                                                         

Most importantly, we have an estimate of the probability that of avoiding 
the OFF configurations, (1-y’(t)), which we were seeking to find.

y′(t) = 1
T
P(Y ′, t)

1
T exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
y′(0)

]

≥ 1 − ε,

∣

∣

∣

∣

∣

∣

∣

∣

[

PJ(tf )
y′(tf )

]

− exp

[

AJ tf 0
1

T
AY ′J tf 0

] [

PJ(0)
y′(0)

]
∣

∣

∣

∣

∣

∣

∣

∣

1

≤ ε
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Results

The reduced FSP solution takes only 1.9 
seconds to compute.

time (s)

Upper Bound

Lower Bound

(1 − y′(t))

(1 - the probability of turning OFF) vs. time
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Results

The reduced FSP solution takes only 1.9 
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Provides guaranteed bounds on the 
probability of switching.
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Results

The reduced FSP solution takes only 1.9 
seconds to compute.

Provides guaranteed bounds on the 
probability of switching.

In comparison, Monte Carlo simulations 
(SSA) require many many runs to achieve 
comparable precision.

time (s)

Upper Bound

Lower Bound

(1 − y′(t))

(1 - the probability of turning OFF) vs. time
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Results

The reduced FSP solution takes only 1.9 
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Table 1: A comparison of the efficiency and accuracy of the FSP
and SSA solutions to find the time at which 99 percent of cells
will have reached the OFF state.
Method # Simulations Comp. Time (s) a t99 Relative Error

Full Model

FSP N.A. 1.9 850 < 0.12%
SSA 103 33 789 ≈ 7.3%
SSA 104 330 806 ≈ 5.2%
SSA 105 3300 838 ≈ 1.5%
SSA 106 3.3 × 104 845 ≈ 0.6%

aAll computations have been performed in Matlab 7.2
on a 2.0 MHz PowerPC G5.
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• Often the FSP is both faster and more precise than Monte 
Carlo approaches.

– Allows additional analytical tools (robustness, sensitivity). 

– Enables model reductions.



Munsky 2006

Acknowledgments
This material is based upon the work supported by the University of 

California, Santa Barbara Chancellor’s Fellowship, the National Science 
Foundation under Grant NSF-ITR CCF-0326576, and the Institute for 
Collaborative Biotechnologies through Grant DAAD19-03-D-0004 from 
the U.S. Army Research Office.


